
Box-and-Pointer Notation

The Closure Property of Data Types

•A method for combining data values satisfies the closure property if:

The result of combination can itself be combined using the same method

•Closure is powerful because it permits us to create hierarchical structures

•Hierarchical structures are made up of parts, which themselves are made up
of parts, and so on

Lists can contain lists as elements (in addition to anything else)

2

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element

Each box either contains a primitive value or points to a compound value

3

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element

Each box either contains a primitive value or points to a compound value

4
pythontutor.com/composingprograms.html#code=pair%20%3D%20[1,%202]%0A%0Anested_list%20%3D%20[[1,%202],%20[],%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20[[3,%20False,%20None],%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20[4,%20lambda%3A%205]]]&mode=

Slicing

(Demo1)

Slicing Creates New Values

6
pythontutor.com/composingprograms.html#code=digits%20%3D%20[1,%208,%202,%208]%0Astart%20%3D%20digits[%3A1]%0Amiddle%20%3D%20digits[1%3A3]%0Aend%20%3D%20digits[2%3A]%0Afull%20%3D%20digits[%3A]&cumulative%3Dtrue&curInstr%3D5&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=[]

Processing Container Values

Sequence Aggregation (Demo2 after each one)

Several built-in functions take iterable arguments and aggregate them into a value

• sum(iterable[, start]) -> value

Return the sum of an iterable (not of strings) plus the value
of parameter 'start' (which defaults to 0). When the iterable is
empty, return start.

• max(iterable[, key=func]) -> value
max(a, b, c, ...[, key=func]) -> value

With a single iterable argument, return its largest item.
With two or more arguments, return the largest argument.

• all(iterable) -> bool

Return True if bool(x) is True for all values x in the iterable.
If the iterable is empty, return True.

8

Trees

Tree Abstraction

10

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a label that can be any value

One node can be the parent/child of another

The top node is the root node

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Labels

Nodes

People often refer to labels by their locations: "each parent is the sum of its children"

Root of the whole tree

Root of a branch

Path

or Root Node

Implementing the Tree Abstraction

• A tree has a root label
and a list of branches

• Each branch is a tree

11

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

def tree(label, branches=[]):
return [label] + branches

def label(tree):
return tree[0]

def branches(tree):
return tree[1:]

Implementing the Tree Abstraction

(Demo3)

12

for branch in branches:
assert is_tree(branch)

return [label] + list(branches)

def is_leaf(tree):
return not branches(tree)

Verifies that
tree is bound
to a list

Creates a list
from a sequence
of branches

def label(tree):
return tree[0]

def branches(tree):
return tree[1:]

def is_tree(tree):
if type(tree) != list or len(tree) < 1:

return False
for branch in branches(tree):

if not is_tree(branch):
return False

return True

def tree(label, branches=[]):
Verifies the

tree definition

• A tree has a root label
and a list of branches

• Each branch is a tree

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

Example: Printing Trees

(Demo4a)

Tree Processing

(Demo4)

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

15

(Demo5)

def count_leaves(t):

"""Count the leaves of a tree."""

if is_leaf(t):

return 1

else:

branch_counts = [count_leaves(b) for b in branches(t)]

return sum(branch_counts)

def leaves(tree):
"""Return a list containing the leaf labels of tree.

>>> leaves(fib_tree(5))
[1, 0, 1, 0, 1, 1, 0, 1]
"""
if is_leaf(tree):

return [label(tree)]
else:

return sum(______________________________, [])

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

16

>>> sum([[1], [2, 3], [4]], [])
[1, 2, 3, 4]
>>> sum([[1]], [])
[1]
>>> sum([[[1]], [2]], [])
[[1], 2]

List of leaf labels for each branch

branches(tree)

[branches(b) for b in branches(tree)]

leaves(tree)

[leaves(b) for b in branches(tree)]

[b for b in branches(tree)]

[branches(s) for s in leaves(tree)]

[s for s in leaves(tree)]

[leaves(s) for s in leaves(tree)]

Creating Trees

A function that creates a tree from another tree is typically also recursive

17

def increment(t):
"""Return a tree like t but with all labels incremented."""
return tree(label(t) + 1, [increment(b) for b in branches(t)])

def increment_leaves(t):
"""Return a tree like t but with leaf labels incremented."""
if is_leaf(t):

return tree(label(t) + 1)
else:

bs = [increment_leaves(b) for b in branches(t)]
return tree(label(t), bs)

def tree_map(t,f):
"""Return a tree like t but with all labels having f applied to them."""
return tree(f(label(t)), [tree_map(b,f) for b in branches(t)])

