Box-and-Pointer Notation

The Closure Property of Data Types

* A method for combining data values satisfies the closure property 1if:

The result of combination can itself be combined using the same method

® Closure 1is powerful because 1t permits us to create hierarchical structures

® Hierarchical structures are made up of parts, which themselves are made up
of parts, and so on

Lists can contain lists as elements (in addition to anything else)

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element

Each box either contains a primitive value or points to a compound value

Global frame list

0 1
pair /\) . ,

pair [1, 2]

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element

Each box either contains a primitive value or points to a compound value

Global frame list
. /\> 0 1
pair 1|2
nested list
list list
0 |1 3__/_)0 1

o \ 1 | 2

en\wty list

pair = [1, 2]

list list
0 |1 0 1 2
/
nested list = [[1, 2], [I], 1] \ 3 | False | None
[[3, False, None],
4, lambda: 5171 list /func A() <line 5> [parent=Global]
—— ' 0o |1
4

pythontutor.com/composingprograms.html#code=pair%20%3D%20[1,%202]%0A%0Anested_11ist%20%3D%20[[1,%202],%20[],%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20 [[3,%20False,%20None] ,%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20 [4 , %2

Slicing

(Demo1l)

Slicing Creates New Values

Global frame list

. digits = [1, 8, 2, 8] digits | o 01 18 22 38
start = digits[:1] start |

middle = digits[1:3] middle \.ist
- end = digits[2:] end : ’
5 full = digits[:) full -

A

)

= W N

pythontutor.com/composingprograms.html#code=digits%20%3D%20[1,%208,%202,%208]%0Astart%20%3D%20digits [%3A1]%0Amidd1e%20%3D%20digits [1%3A3]%0Aend%20%3D%20digits [2%3A]%0ATU11%20%3D%20digits [$3A]&cumulative%s3Dtrue&curInstris3D5&mode=display&origin=composingprograms. js&py=3&rawInputLstISON=[]

Processing Container Values

Sequence Aggregation (DemoZ2 after each one)

Several built-in functions take iterable arguments and aggregate them into a value

- sum(iterable[, start]) —> value
Return the sum of an iterable (not of strings) plus the value

of parameter 'start' (which defaults to 0). When the iterable is
empty, return start.

- max(iterable[, key=func]) —-> value
max(a, b, ¢, ...[, key=funcl) —-> value

With a single iterable argument, return its largest 1item.
With two or more arguments, return the largest argument.

. all(iterable) —> bool

Return True if bool(x) is True for all values x in the iterable.
If the 1terable 1i1s empty, return True.

Trees

Tree Abstraction

or Root Node

(wooden trees): Relative description (family trees):
A tree has a root label and a list of branches Each location in a tree 1s called a node
Each branch 1s a tree Each node has a label that can be any value
A tree with zero branches 1is called a leaf One node can be the parent/child of another
A tree starts at the root The top node is the root node

People often refer to labels by their locations: "each parent i1s the sum of its children™

Implementing the Tree Abstraction

def tree(label, branches=[]):
return [label] + branches

def label(tree):
return treel0]

def branches(tree):
return tree[1:]

« A tree has a root label
and a list of branches

- Each branch 1s a tree

/

1 2

3
/ AN
1 1
>>> tree(3, [tree(1),
tree(2, [tree(1),
tree(1)]1)])

3, [1l, 12, I1]1, [1]]]

Implementing the Tree Abstraction

verities the and a list of branches

for branch 1n branches:
tree definition |
.. - . Each branch is a tree

def tree(label, branches=[]): . N . A tree has a root label
assert 1s tres_(_?_r_a_n_c_‘—_hk__{ ______

A

- ™
def label(tree): (reates a list
0] from a sequence
return tree of branches
_ J
def branches(tree): N 1 2
Verifies that /

return tree[1:] .
tree is bound 1 1

N to a list

def is Pf@@fﬁfﬁ@) ____________________ >>> tree(3, [tree(1l),

1f~type(tree) != list:or len(tree) < 1: o tree(2, [tree(1),
return False - tree(1)])1)
for branch in branches(tree):
if not is _tree(branch): 3, 11l, 12, 11], 111]]
def is leaf(tree):

return False Deno3)
return True return not branches(tree) emo

Example: Printing Trees

(Demo4a)

Tree Processing

(Demo4)

Tree Processing Uses Recursion

Processing a leaf 1s often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

def count leaves(t):

""Count the leaves of a tree."""
if is leaf(t):

return 1
else:

branch counts = [count leaves(b) for b in branches(t)]

return sum(branch counts)

(Demo5)

Discussion Question

Implement leaves, which returns a list of the leaf labels of a tree
Hint: If you sum a list of lists, you get a list containing the elements of those lists

>>> sum([[1], [2, 31, [4] 1, [1) def leaves(tree):

1, 2, 3, 4] "HHReturn a list containing the leaf labels of tree.
>>> sum([[1] |, []) >>> leaves(fib_tree(5))
[1] [11 01 11 01 1r 1’ 01 1]
1 ’ 2 ’ I.IIIII.
>>> sum([[[1]11, [2] 1, []) it is leaf(tree):
[[1], 2] return [label(tree)]
else:

return sum(List of leaf labels for each branch = [])

branches(tree) ‘b for b in branches(tree)]
leaves(tree) s for s in leaves(tree)]
[branches(b) for b in branches(tree)] branches(s) for s in leaves(tree)]

[leaves(b) for b in branches(tree)] ‘leaves(s) for s in leaves(tree)]

Creating Trees

A function that creates a tree from another tree 1s typically also recursive

def increment leaves(t):

if is leaf(t):
return tree(label(t) + 1)
else:

Return a tree like t but with leaf labels incremented.™™"

bs = [increment leaves(b) for b in branches(t)]

return tree(label(t), bs)

def increment(t):
"""Return a tree like t but with all labels
return tree(label(t) + 1, [increment(b) for

def tree map(t,f):
"""Return a tree like t but with all labels
return tree(f(label(t)), [tree map(b,f) for

incremented."""
b in branches(t)])

having f applied to them.
b in branches(t)])

